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Abstract: In this short review, we discuss a few recent advances in calculating the nonradiative decay rates for point defects in
semiconductors. We briefly review the debates and connections of using different formalisms to calculate the multi-phonon pro-
cesses. We connect Dr. Huang’s formula with Marcus theory formula in the high temperature limit, and point out that Huang’s
formula provide an analytical expression for the phonon induced electron coupling constant in the Marcus theory formula. We
also discussed the validity of 1D formula in dealing with the electron transition processes, and practical ways to correct the anhar-
monic effects.
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1.  Introduction

It is a great honor to write this short review in memorial of
Dr. Kun Huang, one of the founding persons of Chinese semi-
conductor  science,  and  a  great  pioneer  in  studying
electron–phonon  coupling  in  semiconductors.  I  didn't  have
the opportunity to meet with Huang in person, but have the for-
tune to learn from and collaborate with many of his students
and  student's  students.  The  favorite  topic  of  Huang  is  elec-
tron–phonon coupling and its consequences in semiconduct-
ors physics. In this short review, I will discuss a few recent devel-
opments in this area, mostly based on my own works, some of
them in collaborations with colleagues in the Institute of Semi-
conductors  in  Chinese  Academic  of  Science  for  which  Huang
has served as its first director. This by no mean is a complete re-
view, but rather some personal views about this topic.

Ψi,n(r, R) = ψi(r, R)φi,n(R)
ψi(r, R)

One topic is the nonradiative decay of free carriers caused
by defects in semiconductor, most notably the Shockley-Read-
Hall  (SRH)  process.  This  is  an important  process  in  the opera-
tion  of  semiconductor  devices,  especially  for  deep  defect
states. The electrons (or holes) hop from the band edge to the
defect state through multiple phonon processes, and it can sub-
sequently lead to carrier annihilation. The basic formalisms of
such multiphonon processes have been worked out in 50's by
S.  K.  Pekar[1] and  K.  Huang,  A.  Rhys[2].  These  derivations  are
based on Franck-Condon approximation of the electron–phon-
on wave functions, where the electron–nuclear wave function
is approximated as , here i and n are
electron and phonon eigen state index,  and r and R are elec-
tron and nuclear degree of freedom. While the electron wave
function  satisfies  the  electron  Schrodinger's  equation
at a given nuclear coordinate R:
 

H(r, R)ψi(r, R) = εi(R)ψi(r, R). (1)

φi,n(R)
εi(R)The  nuclear  wave  function  satisfies  its  own  Sch-

rodinger's equation using  as its potential energy:
  [∑

R
−


MR

∇
R + εi(R)]φi,n(R) = Ei,nφi,n(R). (2)

Ei,n
Ψi,n(r, R) MR

Ψi,n(r, R) = ψi(r, R)φi,n(R)
∂ψi(r,R)

∂R
∂φi,n(R)

∂R
∂ψi(r,R)

∂R

ψi(r, R) ψj(r, R)

Here  is the total eigen energy of the electron–nuclear
wave function ,  is the nuclear mass. However, the

 is not a true eigen state of the elec-
tron-nuclear total  Hamiltonian due to a cross derivative term:

 as well as a second derivative term: . Usu-

ally the cross derivative term is much larger than the second de-
rivative term, and it  causes coupling between the initial  elec-
tron state  and the final electron state . This natur-
ally leads to the adiabatic state coupling formalism[1, 2].

ψi,n(r, R) ψj,n(r, R)
ψi,n(r, R) ψj,n(r, R)

R
R R(i) R(j)

ψi,n(r, R) ψj,n(r, R)
R = R R

R
R

R

Although  elegant  in  its  derivation,  very  soon  it  was  real-
ized  that  the  adiabatic  state  coupling  formalism  gave  too
small  transition  rates  compared  with  experiments.  To  solve
this problem, Kovaskiy, Sipdvskiy[3, 4] and Passler[5, 6] proposed
to  use  a  static  formalism,  where  both  and 
are  replaced  by  their  counter  parts  and 
where  is chosen as the equilibrium position at one electron-
ic state (e.g.,  will be either  or ). Thus although the
state  and  (the states before and after the
transition) are the electron eigen states when , when 
deviates  from this ,  they  are  no longer  eigen states  due to
the  dependence  of  the  electron  Hamiltonian  on .  Thus,  the
phonon displacement  away from the equilibrium position 
causes the electronic state coupling.

ψi,n(r, R) ψj,n(r, R)
εi(R) εj(R)

/(εi(R) − εj(R))
/(εi(R) − εj(R))

For  a  long  time,  there  were  debates  for  the  validity  and
the  meaning  of  using  static  coupling  formalism[3–8].  Huang
gave a very interesting derivation in early 1980[8, 9].  He shown
that,  in  a  perturbation  representation  of  the  electronic  state

 using  the  static  state  as  the  basis  set,  if
one replaces the static eigen energies ,  in the per-
turbation theory denominator  by  the R de-
pendent  eigen  energies:  ,  then  one  can  arrive
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at  the  static  coupling  formalism  starting  from  the  adiabatic
coupling  formalism.  This  in  a  sense  unifies  these  two  formal-
isms  within  the  framework  of  perturbation  theory[8].  At  the
end, the static coupling formalism will be the preferred formal-
ism.

Rc

Rc

/(εi(R) − εj(R)) Rc

Rc

∂ψi(r,R)
∂R Rc

Rc

∂ψi(r,R)
∂R

∂ψi(r,R)
∂R ∣R Rc

One can view this problem from other angles. The Franck-
Condon  approximation  is  good  only  at R positions  where
there is no near degenerated i and j electron eigen states. Unfor-
tunately,  the degeneracy (or say the energy crossing of these
two  states)  is  exactly  what  happens  at  the  coordinate 
where the transition happens (see Fig. 1). So, the Franck-Con-
don approximation is invalid at the transition nuclear coordina-
tion .  This  is  the  same  situation  as  for  the  conical  point  in
quantum chemistry  treatment of  molecular  systems.  This  can
also  been  seen  from  Huang's  perturbation  treatment.  If

 is used, then at the crossing point , the per-
turbation  theory  is  diverging.  Actually,  if  one  follows  exactly
the adiabatic state definition, at the crossing point , the phys-
ical identity of the i and j state will  change, one must be very
carefully  in  identifying  which  state  is  which  when  describing
the  transition.  For  example,  there  will  be  a  large  and  sharp

spike in  at  due to the identity change (if i is used to in-
dicate one continuous adiabatic state, as indicated by one sol-
id  line  in Fig.  1).  This  makes  the  Franck-Condon  electron  and
phonon wave function separation treatment a bad approxima-
tion at this , and perhaps more importantly, it makes the com-
monly  used  approximation  in  the  adiabatic  coupling  treat-

ment:  replacing  by ,  totally  invalid  at .  All
these justify the use of static formalism.

Rc

Rc
ΔRij = R(i) − R(j) ΔRij

Fig.  1 also  connects  the  nonradiative  state  transition  to
the  Landau-Zener  transition[10, 11] and  Marcus  theory[12].  The
Landau-Zener  transition  is  mostly  a  1D  model.  It  has  been
used by Lang et al.[13] to treat the nonradiative transition. Simil-
ar approach has also been used by Alkauskas et al.[14] more re-
cently in an ab initio treatment. However, the multiphonon pro-
cess is not necessarily a 1D process, in the sense that the trans-
ition cross point  (the energy conservation modes)  and the
coupling (the promoting modes) are not caused by the same
phonon  degree  of  freedoms[15].  More  specifically,  the  energy
conservation  (accepting)  modes  (or  say  the  phonon  modes
which lead to the transition point ) come from the displace-
ment .  This  displacement  comes  from
the  diagonal  elements  of  the  electron–phonon  coupling:

< ψi∣∂H∂R ∣ψi > − < ψj∣∂H∂R ∣ψj >
< ψi∣∂H∂R ∣ψj > ΔRij

 (together  with  the  phonon  fre-
quencies).  On  the  other  hand,  the  promoting  modes  comes
from  the  cross  terms  of  the  electron–phonon  coupling:

.  The  and  the  cross  coupling  can  both  be
viewed as multidimension vectors, and the directions of these
two  vectors  can  be  rather  different.  In  the  high  dimensional
space of R, their dot product could be close to zero[16]. For ex-
ample, in the ZnGa + VN defect complex in GaN, the energy ac-
cepting  modes  are  consisted  with  acoustic  phonon  modes,
while the promoting modes come from optical phonons[15].

Marcus theory is also often used to describe electron trans-
itions  from  one  state  to  another,  especially  for  electronic
states located at different positions[17]. While the energy barri-
er  of  the  Marcus  theory  also  comes  from  atomic  displace-
ments (hence the diagonal elements of electron–phonon coup-
ling), the electronic coupling can come from different sources,
e.g., an applied electric field, or more intrinsic coupling. In the
case  the  coupling  is  also  caused  by  phonon  modes  (e.g.,  the
pure multiphonon process as described above), Huang has de-
rived a very interesting high temperature classical approxima-
tion  formula[9],  which  essentially  gives  the  coupling  constant
of Marcus theory based on the electron–phonon coupling con-
stants  and  phonon  mode  frequencies.  Even  when  the  main
coupling is not caused by electron–phonon coupling, it might
be possible that the coupling constant provided by Huang's for-
mula is related to the environmental effects during the Land-
au-Zener  transition[18, 19].  This  will  be  an  interesting  research
topic for the future.

2.  Ab initio calculations of nonradiative carrier
decay rates

< ψi∣∂H∂R ∣ψj >
Vtot(r)

ψi ψj

Modern  theoretical  defect  studies  are  mostly  depending
on ab initio calculations, especially using density functional the-
ory (DFT)[20–22]. In recent years, the use the hybrid functional[23]

has made the defect level calculations more accurate, and can
yield energy level results consistent with experiments[24].  One
current frontier is to study the dynamic properties of such de-
fects,  including  the  nonradiative  decay  rates.  As  discussed
above, the basic formalism (e.g., the static coupling formalism)
already existed. Thus a contemporary challenge is to use ab ini-
tio method  to  calculate  the  electron–phonon  coupling,  and
compared  the  results  with  experiments.  The  straight  forward
calculation  of  requires  the  calculation  of  the
change of  (the total selfconsistent potential in DFT meth-
od) due to the displacement of one atomic coordinates. Thus,
if  there are N atoms in a supercell  (as in a defect calculation),
there need to be 3N self-consistent field (SCF) calculations. As
N can be in the order of 1–2 hundreds, this makes the calcula-
tion rather expensive. We have developed an approach which
can yield all the electron–phonon coupling constants for a giv-
en ,  pair in one SCF calculation[15].  This makes the multi-
phonon process calculation more practical.

C(i, j, R) =< ψi∣∂Vtot(R)∂R ∣ψj >
ρ(r) = ∑i ∣ψi(r)∣oi + αRe[ψ∗i (r)×

ψj(r)] oi
ψi

More specifically,  to  calculate ,
during the SCF calculation, one can add one extra term in the
total electronic charge density: 

, here  is the occupation number of the Kohn-Sham ei-
gen state . The first term is the usual formula to calculate the
charge density, while the second term is the additional charge

 

E
n

e
rg

y

Atomic coordinate R R0(j)

Ei

ΔE

ψi(r, R) ψj(r, R)

R0(i)
Rc

Ei

λ

ψi(r, R)
ψj(r, R)

Fig.  1.  (Color online) A schematic energy diagram of the phonon de-
gree of freedom at the initial electronic state  and final electron-

ic state .
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α

FR,α = ∫ ρ(r)dVion(r, R)/dRdr Vion

density  with  being  a  small  parameter.  Besides  the  charge
density,  all  other  formulas  are  kept  the  same  as  in  a  normal
Kohn-Sham calculation. Furthermore, the atomic force is calcu-
lated  using  Hellmann-Feynman  formula  as:

 (  is the nuclear ionic poten-
tial). Then we can shows that[15]:
 

C(i, j, R) = dFR,α
dα

. (3)

α
α =  α

C(i, j, R)
The derivative regarding to  can be done numerically, by

using  (the original SCF calculation results) and a small 
like  0.1.  In  doing  so,  we  can  get  all  the  coupling  constant

 in one extra SCF calculation. The same variational ap-
proach  can  be  applied  to  hybrid  functional  calculations.  In
that case, during the SCF calculation, besides the above addi-
tional term in the charge density, one also needs to add one ex-
tra term in the Fock exchange integral as: 

P̂ψk = α ∫ [ψi(r)ψ∗j (r′) + ψj(r)ψ∗i (r′)]f(∣r − r′∣)ψk(r′)dr′, (4)

f(∣r − r′∣)

M(R, R) = ∂Etot
∂R∂R

=
∂FR
∂R

R R
Rd M(R, R)

∂FR
∂R

here   is  the  truncated Coulomb interaction kernel
used in the hybrid functional. Besides the electron–phonon
coupling constant, one also needs to calculate the phonon
spectrum of the defect system in order to use the analytical
formulas derived by Huang et al.  One way to calculate the
phonon spectrum of the supercell is to calculate the dynamic

matrix . Once again, this requires the

numerical displacement of all N atoms within the supercell.
Thus the benefit of the above variational calculation of the
electron–phonon coupling constant will  be lost if  such dy-
namic matrix needs to be calculated directly. Fortunately, we
found that[15] if both  and  are away from the point defect,
beyond a cutoff radius ,  then  can be approxim-
ated by the counter part from the perfect crystal. For crystal,
due to the translational symmetry, one only needs to displace
the atoms within one primary cell,  instead of all  the atoms

within a supercell. As a result, we only need to calculate 

R Rd

∂FR
∂R

for  within . Typically 10–50 numerical displacements are
needed to carry out the SCF calculations to yield all needed

.  It  has  been shown this  procedure yield very accurate

phonon spectrum for  the supercell  system containing one
point defect[15].

∑R C(i, j, R)(R − R) ∑R
C(i, j, R) (R − R(i))
R

R
R(i) R(j)

C(i, j, R)
ΔRij = R(j) − R(i)

R(i) R(j)
< φi,n(R)∣(R − R(i))∣φj,m(R) >

φi,n(R) φj,n(R)
ΔRij

i
j < φi,n(R)∣(R − R(i))∣φj,m(R) >

After we obtain both the electron–phonon coupling con-
stant  and  phonon  spectrum,  the  multi-phonon  nonradiative
process can be calculated directly. There are different ways to
derive  the  analytical  formula,  all  based  on  the  use  of  Fermi
Golden rule between the initial and final states with Franck-Con-
don  separation  of  the  electron  wave  function  and  phonon
wave  function.  The  coupling  Hamiltonian  in  the  static  coup-
ling  approximation  is  a  perturbation  term  proportional  to

 (note,  the R in  the  summation   and  in
 is  used as an index,  while in  it  is  a  vector).

 is  the  starting  point  for  the  static  coupling  calculation.
There  is  an  ambiguity  for  what  to  choose  for .  Usually  one
either choose it as  or . However, for most cases, since
the promoting mode direction of  is almost perpendicu-
lar to the accepting mode direction of , the
choice of  or  does not really matter (as well be shown
later  in Fig.  2).  What  left  is  to  evaluate

 under  a  thermodynamic  as-
sembly. The harmonic approximation is taken to describe phon-
on modes  and . Very often it is assume they are
the  same  phonon  modes  (and  frequences)  but  with  a  zero
point displacement of ,  although analytical equations can
also be obtained if different harmonic phonon modes at  and
 are used[25]. To evaluate the  un-

der  a  thermodynamic  assembly  and  a  delta  function  for  en-
ergy conservation, one first converts the delta function for en-
ergy conservation into an integral using Dirac distribution func-
tion:
 

δ(ω) = 
π ∫ ∞

−∞
eiωtdt. (5)
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Static coupling
Marcus theory
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R(j)
R(i)

Fig. 2. (Color online) The comparison of transition rates calculated using different formulas for the nonradiative transition of electron from the
conduction band of bulk GaP to the ZnGa + OP point defect. Marcus theory, quantum CT rate, 1D by Alkauskas's code, and 1D by our code, are all
one dimensional models. They all give very similar results. Compared with experiment, the multiphonon static coupling formula gives the best
results, while the adiabatic coupling results are almost two order of magnitudes smaller. In (a), the calculations are done using the  as the
perturbation starting point, while in (b),  is used as the starting point. As one can see, the results of these two treatments are similar for the
multiphonon formula of static coupling and adiabatic coupling. On the other hand, for all the 1D formula, the results are very different. The de-
tails of the calculations are described in Ref. [31]. The images are taken from Ref. [16] with permission.
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dtThis always leads to an  integration for the final formula.
After  subsequent  derivations  based  on  matrix
manipulations[26–28], one can obtain a formula for the i to j non-
radiative transition rate as:
 

Wij = π ∑
k,k

Cki,jC
k
i,jA

k,k
ij , (6)

Cki,j
C(i, j, R)

k Ak,kij

here   is  just  the  electron–phonon  coupling  constant
, however, converted into the phonon mode coordin-

ate . The matrix  can be evaluated as:
 

Ak,kij = 
πZ ∫ ∞

−∞
χk,kij (t, T)e−i(Ei−Ej)tdt, (7)

Z = ∑n exp(−βEi,n)
β = (kBT)− Ei Ej

R(i) R(j)
χk,kij (t, T)

ΔRij

here  is the phonon partition function and

, the  and  are the defect state energies of the
electronic  state  i  and  j  at  their  equilibrium  atomic
positions   and  respectively (Fig. 1). The expression

for the matrix  is a bit complicated[16]. It is expressed
by several other matrices with phonon frequencies and the
atomic displacement  as their variables.

In our previous work[16], we have adopted the above formal-
ism  by  Borrelli et  al.[28].  However,  we  later  found  that  Huang
gave a different derivation earlier in 1981[9]. He explicitly integ-
rated  out  the  harmonic  phonon  wave  functions  using  their
Gaussian representations. He arrived at a more concise formal-
ism:
 

Wij = π∫ ∞

−∞
{[∑

k
Cki,jΔQ

k
ij(cos(ωkt) + icoth(βωk/)sin(ωkt))]

+


∑
k
∣Cki,j∣ 

ωk
(coth(βωk/)cos(ωkt) + isin(ωkt))}

×

πexp[ − it(Ej − Ei) −∑

s

ωs

∣ΔQsij∣(coth(βωs/)

× ( − cos(ωst) − isin(ωst))]dt.
(8)

ΔQkij ΔQsij ΔRij
i j

Here   and   are  the  atomic  displacements  
between state  and  converted into phonon mode coordin-
ates k and s respectively. We have numerically tested this con-
cise equation versus the more complicated equation derived
by Borrelli et al.[28], they give the exactly same results.

ψi ψj

The  concise  formalism  allows  Huang  to  apply  the  steep-
est  decent  approximation to  get  an closed analytical  formula
(without the dt integration) for high temperature approxima-
tion. To do that, one finds the maximum of the exponent as a
function of t,  and expands it  with a second order approxima-
tion.  The  resulting  Gaussian  exponential  can  be  integrated
over t, yielding in a closed analytical formula. Such closed analyt-
ical  formulas  exist  for  adiabatic  approximation  of  multiphon-
on transition[7],  as  well  as  for  quantum mechanical  treatment
of  the  Marcus  theory[29] where  the  transition  coupling
between the two electron states  and  is assumed to be an
constant, independent of the phonon degree of freedom. For
the static coupling approximation, we only found such closed
formula in Huang's work[9]. We can thus call it the Huang's for-
mula, which is:

 

Wij = (πkT
Sω̄

)/ ⎛⎜⎝∑k 

ω
k

∣Cki,j∣⎞⎟⎠exp ⎛⎜⎝− (Ei − Ej − Sω̄)
kTSω̄

⎞⎟⎠ . (9)

S = ∑k ∣ΔQkij∣ωk


Sω̄ = ∑k ∣ΔQkij∣ω
k
 Sω̄

λ
εi(R(j)) − εi(R(i))

Here  S  is  the  Huang-Rhy's  factor[2]  ,  and

. The  is nothing but the reorganization

energy  used in classical formula like the Marcus theory. This
reorganization energy equals  as shown in
Fig. 1. The above formula can be directly compared with the
Marcus theory which is:
 

Wij = (πkT
λ

)/ 
kT

∣Vc∣exp ⎛⎜⎝− (Ei − Ej − λ)
λkT

⎞⎟⎠ . (10)

∣Vc∣ kT∑k

ω
k
∣Cki,j∣

i j

Thus, Huang's formula provides an expression for the coup-

ling constant  in the Marcus theory as:  this

is  valid  for  the  phonon  induced  coupling  between  the  elec-
tron states  and . As discussed before, one can think about oth-
er  causes  for  the  coupling  in  a  more  general  case.  Neverthe-
less, the Huang's formula can be used to estimate the phonon
contribution to such coupling.

We have tested Huang's formula of Eq. (9) versus direct dt
integration of Eq. (8). As shown in Fig. 3, the high temperature
formalism is valid when the temperature T is higher than 300 K
for  the  case  of  ZnGa–VN defect  in  GaN  and  a  hole  transition
from the valence band edge to the defect state.

ΔRij

We can now numerically calculate the multiphonon trans-
ition rate using ab initio methods, either using the direct integ-
ration as in Eq. (8), or using the high temperature Huang's for-
mula of Eq. (9). Such calculation procedure has been implemen-
ted  within  the  PWmat  code  package[30],  in  an  automatic  way
to calculate the electron-phonon coupling, defect phonon spec-
trum, and the static coupling formula for the nonradiative trans-
ition  rate.  The  calculated  results  are  usually  in  good  agree-
ment with the experiments. Fig. 2 shows a comparison of differ-
ent  calculation  methods,  both  with  the  explicit  multiphonon
mode calculation, and 1D models along the  direction. As
we can see that, in this case, the 1D model all give very differ-
ent results compared with the explicit multiphonon static coup-
ling  formula.  The  static  coupling  results  are  in  good  agree-
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Fig.  3.  (Color  online)  The  nonradiative  electron  transition  rates  for  a
hole from the valence band edge to a ZnGa+VN complex defect state
in GaN. The high temperature formula result is compared with direct t
integration formula. When the temperature is smaller than 300 K, the
high temperature formula under estimates the transition rate.
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R(j)

ment with the experiment. Furthermore, the 1D model sensit-
ively depend on which equilibrium point is chosen for : 
or . On the other hand, the static coupling result is insensit-
ive to such choices.

3.  Remaining challenges and direct dynamic
process simulations of electron–phonon
coupling problems

λ

Sω̄

Sω̄ = ∑k ∣ΔQkij∣ω
k


λ

i j

exp(−ΔE/kT)
ΔE

ΔE

There are still challenges for accurate prediction of the non-
radiative decay rate and the related studies. The first is an exper-
imental one, as there is a scarcity of the experimentally meas-
ured  nonradiative  decay  rate  for  different  defects.  The  com-
monly used method: deep level transient spectroscopy (DLTS)
can miss some deep defect with low concentrations,  and res-
ults  can also be influenced by factors  like Coulomb repulsion
between the charged defect  and the band edge free carriers.
Although there are other  alternative techniques,  both optical
measurements and non optical measurements[32], due to pos-
sible  multichannel  competition,  the  interpretation  of  the  res-
ults can still be challenging. In terms of calculation, the anhar-
monicity of the phonon oscillation is one major uncertainty. In
ab  initio  calculation,  it  is  often  found  that  the  directly  calcu-
lated  the  atomic  relaxation  energy  after  the  electron  trans-
fers  from i to j state  (e.g.  from band edge state  to  the  defect
state),  can  be  larger  than  the  relaxation  energy  as  calculated
by . If the relaxation and the transition coupling happens in
the  same  direction,  then  an  1D  approximation  can  be  used,
and direct numerical calculation can be used to study the trans-
ition process as a Landau-Zener transition[33].  However, if that
is  not  the  case,  such  1D  approximation  cannot  be  used.  In
such cases, one approximation is to rescale all the phonon fre-

quency  so  that  will  yield  the  same  results

as  the  numerically  calculated  reorganization  energy .  This
also allows us to evaluate the Eq. (8) in the low temperature situ-
ation. Another challenge is that, the phonon modes at  and 
can be different. For Huang's formula, while one can use the av-
erage formula for the effective coupling constant,  what more
critical  is  the  exponential  term,  which  is ,  here

 is the barrier between i and j, as shown in Fig. 1. One approx-
imation  is  to  re-evaluate  this ,  the  lowest  valley  crossing
point for the two multi-dimension parabolas between i and j,
and  using  that  to  replace  the  exponential  term  in  Huang's
high temperature formula. As a matter of fact such correction
can  be  even  applied  to  the  low  temperature  integration  for-
mula. We found that, after such correction, the calculated trans-
ition  rate  can  increase  by  almost  an  order  of  amplitude  in
some cases, bringing the result further closer to the experiment-
al values.

We also like to mention that sometime the SRH electron-
hole recombination can happen through a multi-step process,
with  several  intermediate  transitions  corresponding  to  differ-
ent  occupations  and  charge  states  for  the  defect  level[34].  Al-
though  analytical  multi-phonon  formula  can  still  be  used  in
such  cases,  one  alternative  approach  could  be  to  do  direct
real-time time dependent density functional theory (rt-TDDFT)
simulations[35].  In the rt-TDDFT calculation, the nuclear move-
ment  follow  the  Ehrenfest  dynamics.  It  is  a  classical  descrip-
tion  for  the  nuclear  movement,  thus  it  is  likely  adequate  in
high temperature limit.  Since the electron movement follows

the time dependent Schrodinger' equation, it can be used to de-
scribe the Landou-Zener transition. Compared to the analytic-
al formalism, one advantage of direct rt-TDDFT is its ability to
describe anharmonic nuclear movement and strong electron-
phonon coupling. On the other hand, due to the classical de-
scription of the nuclear movement,  it  lacks the detail  balance
between the i to j transition and j to i transition. Recently, we
have added such detailed balance within rt-TDDFT, as a result,
it  can  be  used  to  describe  multiphonon  nonradiative  decay.
For example, we have used such direct simulation to study the
molecule dissociation caused by electron ionization. This is par-
ticularly useful to describe very strong electron-phonon coup-
ling, e.g., inside a small molecule, or for a carrier on a localized
defect state and going through multiple stages in such defect
state.  Future  investigation  of  such  problems  will  be  interest-
ing. For larger systems, one can ignore the back reaction from
the  electron  movement  to  the  nuclear  movement,  thus  can
use  the  ground  state ab  initio molecular  dynamics  trajectory
to  describe  a  time  dependent  Hamiltonian,  then  use  such
Hamiltonian  to  study  the  carrier  dynamics.  This  approach  is
called  nonadiabatic  molecular  dynamics,  (NAMD),  which  al-
lows the simulations of  much larger systems (e.g.,  a  few hun-
dred  atoms)  for  much  longer  times[36] (e.g.,  10  ps).  All  these
provide alternative approaches to study the electron-phonon
coupling and its related carrier dynamics behavior. Compared
with  the  analytical  formula,  one  limitation  is  the  simulation
time. If the decay lifetime is much longer than 10 ps, direct simu-
lation  will  become  rather  difficult.  So  they  are  only  good  for
strongly electron-phonon coupled systems (for rt-TDDFT simula-
tions)  or  for  problems  involve  many  electronic  state  trans-
itions (for NAMD simulations).

4.  Conclusions

In  summary,  in  this  short  review,  some  current  develop-
ments in calculating nonradiative decay rates of defects in semi-
conductors are presented, as well as a brief review for the deriv-
ation of Huang's formula. In particular, one procedure was de-
veloped  to  calculate  all  the  electron-phonon  coupling  con-
stant  within  one  self-consistent  field  calculation.  Another  ap-
proximated  way  is  introduced  to  calculate  all  the  phonon
modes within a supercell containing a point defect. Such devel-
opments, together with Huang's formalism, allow us to calcu-
late the nonradiative decay rate at ab initio level, and the res-
ults  agree  well  with  the  experiment.  We  have  also  discussed
some of the remaining challenges and possible approaches to
overcome  them.  These  include  the  anharmonic  phonon  ef-
fects and different phonon modes at electronic state i and j. Fi-
nally,  we discussed modern direct simulation methods, either
rt-TDDFT,  or  NAMD,  which  can  be  used  to  study  problems
with strong electron-phonon coupling and strong anharmonicit-
ies  of  the  phonon  modes,  or  to  study  carrier  dynamics  in-
volving many electronic states.
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